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Abstract

We study Drell-Yan (DY) dilepton production in proton(deuterium)-nucleus and in
nucleus-nucleus collisions within the light-cone color dipole formalism. This approach
is especially suitable for predicting nuclear effects in the DY cross section for heavy
ion collisions, as it provides the impact parameter dependence of nuclear shadowing, a
quantity that is not available from the standard parton model. For p(D) + A collisions
we calculate nuclear shadowing and investigate nuclear modification of the DY trans-
verse momentum distribution at RHIC and LHC for kinematics corresponding to coher-
ence length much longer than the nuclear size. Calculations are performed separately
for transversely and longitudinally polarized DY photons and we make predictions for
the dilepton angular distribution. Furthermore, we calculate nuclear broadening of the
mean transverse momentum squared of DY dileptons as function of the nuclear mass
number and energy. We also predict nuclear effects for the cross section of the DY
process in heavy ion collisions. We found a substantial nuclear shadowing for valence
quarks, stronger than for the sea.



1 Introduction

The cross section for the Drell-Yan (DY) process at the energies of the SPS suggests rather
weak nuclear effects, if any at all (although measurements at small Feynman zz are the
only data available). However, the fixed target experiment E772 at Fermilab at 800 GeV
[1] shows a sizeable nuclear suppression at large 2. Although this suppression results from
a complicated interplay between energy loss and shadowing [2, 3], shadowing effects are
expected to be much stronger and span the entire range of zr at the energies of RHIC and
LHC.

Relying on the standard parton model for proton-nucleus collisions, one can predict
the DY cross section integrated over transverse momentum employing QCD factorization
and data for the nuclear structure functions measured in deep-inelastic scattering (DIS)®.
However, no reliable way is known to calculate nuclear effects in the transverse momentum
distribution within the parton model.

Moreover, for nucleus-nucleus collisions parton model predictions are doubtful even for-
the integrated DY cross section. Indeed, compared to pA collisions, this case requires an
additional integration over impact parameter [see Eq. (47)] and knowledge of the dependence
of nuclear shadowing on impact parameter. Neither DIS, nor the DY reaction on nuclei
provide such information. In principle one can access information on the impact parameter
of interaction relying, for instance, on the amount of so called gray tracks and using simple
cascade models. However, this possibility has never been realised for DIS or DY process.
In view of this problem, it was assumed in a recent analysis [6] that nuclear shadowing is
independent of impact parameter. Clearly, this cannot be correct, and it leads to confusing
conclusions. In particular, the DY cross section in heavy ion collisions turns out to be
independent of centrality. It is known, however, for many processes, that peripheral collisions
are similar to the free NN interaction, while central collisions should manifest the strongest
nuclear effects.

In this paper we calculate nuclear shadowing for the DY cross section using the light-cone
(LC) dipole approach suggested in [7], which overcomes these problems in a simple way. In
the rest frame of the target, the DY reaction cannot be interpreted as quark-antiquark anni-
hilation, since it makes no sense to talk about the parton density of a proton (or a nucleus)
at rest. Indeed, Feynman’s picture of high energy collisions, in which the colliding particles
are viewed as bunches of non-interacting partons with no (or small) transverse momenta, is
applicable in a fast moving frame only. Instead, the DY process in this kinematics should
be interpreted as the bremsstrahlung by a beam quark of a heavy photon, which decays into
the lepton pair, as in fig. 1. Although this looks very different from the more familiar DY
mechanism (8], it is known that the space-time interpretation of high-energy reactions is not
Lorentz invariant and depends on the reference frame.

A quark of the incident hadron can fluctuate into a state that contains a massive photon
(dilepton) and a quark. Interaction with the target breaks down the coherence of the fluc-

1The analysis of data [4] based on the DGLAP evolution equations still neglects effects of saturation [5]
that should be important as far as shadowing sets on. Additionally, no data for DIS on nuclei are available
for small Bjorken « relevant for LHC.



Figure 1: In the target rest frame, DY dilepton production looks like
bremsstrahlung. A quark or an anti-quark from the projectile hadron
scatters off the target color field (denoted by the shaded circles) and ra-
diates a massive photon, which subsequently decays into the lepton pair.
The photon decay is not shown. The photon can be radiated before or
after the quark scatters.

tuation and the v* is freed. Correspondingly, the cross section of the process gp — v* X has
a factorized form [7, 9, 10, 11, 12], '

do(gp — v*X) 0 2 N
dlno :/d p |\IJ’Y*‘1(O"/’)‘ qu(ap,xg) . (1)

where U, (a, p) is the LC distribution amplitude in Egs. (B.2) or (B.3) for having a quark-
photon (transversely or longitudinally polarized) fluctuation with transverse separation g
and relative fractions o and 1 — o of light-cone momenta carried by the photon and quark,
respectively. For the DY reaction in pp-scattering, the dipole cross section needed in (1) is
the same 0(%— as in DIS off a proton 2. Note, that in the two graphs for bremsstrahlung, fig. 1,
the quark scatters at different impact parameters, depending on whether it scatters when in
the |v*q)-state (right) or not (left). This leads to the appearance of the dipole cross section
om(ap, z2) in (1), although there is actually no physical dipole in this process [7, 11].
We use standard kinematical variables,
_ 2Py -q _ 2P -¢q

1 3 ’ ) S y (2)

with 21 — 2o = zp and 2129 = (M? +¢2)/s, where P, P, and q are the four-momenta of the
beam, target and the virtual photon, respectively; M2 = ¢? and @r are the dilepton invariant
mass squared and transverse momentum, respectively; s = (P + P3)2.

The frame dependence of the space-time interpretation of the DY process can be illus-
trated by the different meanings of z; in different reference frames: It is well known that in
the standard picture of DY [8], z; is the momentum fraction of the projectile quark annihi-
lating with the target antiquark. However, evaluating the scalar product (2) in the target
rest frame shows that the projectile quark carries momentum fraction r = z1/a > z; of its
parent hadron and, correspondingly, z; is the momentum fraction of the proton taken away
by the photon. This is not a contradiction, since the projectile quarks in the two reference
frames are different particles.

2This can be easily proven in leading-log order or otherwise justified by referring to QCD factorization.
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In the case of a pA-scattering, one has to distinguish between two limiting kinematical
regimes for the DY reaction. On the one hand, there is the regime of short coherence time ¢.,
which can be interpreted as the mean fluctuation lifetime. If ¢, is much shorter than the mean
internucleon separation no effect of coherence (shadowing) is expected. On the other hand,
in the regime of long coherence time compared to the nuclear radius, t. > R4, interference
of the multiple interaction amplitudes with bound nucleons will affect the probability of
breaking down the coherence of the fluctuation and releasing the dilepton on mass shell,
i.e. shadowing (sometimes antishadowing) occurs. These interferences are controlled by the
longitudinal momentum transfer g. = 1/t. in the process of y* radiation by a projectile quark
of energy Eq, g N = v* ¢ X,

2 2
ge = Mg —me (3)
2E, ’
where we assume energy conservation, and the invariant mass squared of the v*¢ pair is
M2 m2 q2
M2t = — g T . 4
re a+1—-a+a(1—a) (4)

One arrives at a similar estimate with help of the uncertainty principle. Indeed, a quark
can violate energy conservation by fluctuating into y*¢ for a time At ~ 1/(Myq — my)
in the quark’s rest frame. Applying the Lorentz gamma-factor y ~ 2E,/(M,., + m,) one
reproduces the lifetime t, = 1/¢. in the lab frame as given by (3).

The intuitive space-time pattern related to the coherence time for DY pair production off
nuclei is rather obvious. In the limit of short coherence time (relevant for the SPS energy)
the initial state interactions are predominantly soft, since the hard fluctuation containing
the heavy dilepton appears only deep inside the nucleus and is momentarily freed on mass
shell via the interaction with a bound nucleon. .

On the other hand, if the coherence length substantially exceeds the size of the nucleus
(as expected for the energies of RHIC and LHC), the hard fluctuation is created long in
advance of the interaction with the nucleus, which acts as a whole in freeing the fluctuation.
Since different target nucleons compete with each other, the DY cross section is subject to
shadowing,. '

In this paper, we study nuclear effects in the limit of long coherence time. This is a most
interesting regime, where interference effects are maximal and all the nucleons having the
same impact parameter participate coherently in the DY process. A special advantage of
the color-dipole approach is that it aliows one to incorporate nuclear shadowing via a simple
eikonalization of the dipole cross section o} [13, 7] (see next section). This follows from the
fact that in this limit the dipole size is “frozen” by Lorentz time dilation.

A projectile quark can develop more complicated fluctuations which besides the heavy
photon also involve gluons, which correpond to Fock states |¢gy*G), |¢7*2G), etc. Interaction
of these fluctuations with the nucleus is also affected by shadowing which may be even
stronger than for the |gy*) one provided that the fluctuation lifetime is long compared with
nuclear size. This additional shadowing in terms of parton model is related to shadowing of
gluons which results from gluon fusion at small z, (see Sect. 3).



One might think that in the case of pA collision shadowing for DY can be easily predicted
relying on QCD factorization and using data for shadowing in DIS off nuclei. However, data
at small z are available only at very low Q? where neither factorization, nor DGLAP evolution
are expected to be valid. Additionally, one should be cautious applying factorization at
large x; where, as we pointed out above, higher twist corrections are rather large [3]. In
particular, the Bjorken z of the target, z,, reaches its minimal value as z; — 1; therefore,
factorization predicts the maximal strength for shadowing. However, shadowing for the DY
process vanishes in this limit. Indeed, since o > 7, the invariant mass Eq.(4) increases (for
massive quarks and/or nonzero ¢r), leading to the disappearance of the coherence length.

We do not make any fit to the observed shadowing in DIS on nuclei, but follow the logic
of the conventional Glauber approach. Namely, one is permitted to make any fits to data
for nucleon-nucleon collisions, but then nuclear effects must be predicted in a parameter free
way. Indeed, we use the phenomenological dipole cross section on a nucleon target [14] which
is fitted to data for ep DIS from HERA, which covers a range of much higher energies than
available from fixed target data for nuclear shadowing. The DY cross section calculated with
this phenomenological cross section is supposed to include all higher order corrections and
higher twist effects. :

Another important advantage of our approach is the possibility to calculate nuclear effects
in the transverse momentum distribution of DY pairs, which is a difficult problem within the
parton model. The phenomenon of nuclear broadening of the dilepton transverse momentum
looks very different at low (short l.) and high (long [.) energies. If ¢, is short, the hard
fluctuation containing the heavy dilepton is created deeply inside the nucleus just before the
interaction, which releases it. Meanwhile, the incident hadron may have soft initial state
interactions in the nucleus. These do not generate DY dileptons, but rather increase the mean
transverse momentum of the fast partons of the projectile. Indeed, a fast parton experiencing -
multiple interactions performs a sort of Brownian motion in the plane of transverse momenta.
Thus, the parton arrives with an increased transverse momentum at the point of the DY
pair creation. The dilepton carries undisturbed information about the enhanced transverse
momentum of the projectile quark when it is produced off a nucleus as compared to a proton
target. Nuclear broadening in the limit of short coherence time was investigated previously
in [15].

At first glance, in terms of parton model the observed broadening of the dilepton trans-
verse momentum should be interpreted as a result of increase transverse momentum of quarks
and antiquark in the nucleus. However, such a conclusion contradicts the usual picture of a
nucleus boosted in the infinite momentum frame. Nucleons and their parton clouds are well
separated and do not overlap at large x5, the same way as they are separated in the nuclear
rest frame. We know that only at very small z, the parton clouds overlap and fuse leading
to nuclear shadowing. Such a fusion process results not only in suppressed parton density,
but also in an increased transverse momenta of partons. Thus, shadowing and gy broaden-
ing at small zo are closely related processes, no broadening is possible without shadowing.
However, the regime of short [, corresponds to large z, where neither shadowing, not gr
broadening is expected for the nuclear parton distribution function. Thus, we face a puzzle,
nuclear broadening of the transverse momentum distribution of DY pairs calculated in the



nuclear rest frame and observed experimentally, has no analog withing the parton model.
This puzzle has been resolved long time ago by Bodwin, Brodsky and Lepage [16] who found
that in the regime of short coherence length initial state interactions leading to pr broaden-
ing, violates QCD factorization, and should not be translated to a nuclear modification of
the quark distribution function. Initial state energy loss 2, 3] also cannot be translated to
a modification of z-distribution of partons in nuclei. This is a general statement which is
applied to other hard reactions, like high-gr hadron production etc.

In the regime of long coherence time ¢, > R4 relevant to RHIC and LHC, a very different
mechanism is responsible for broadening of the transverse momentum distribution [10]. A
high energy projectile quark emits a dilepton fluctuation (via a virtual time-like photon) long
before its interaction with the nucleus. These components of the fluctuation, the recoil quark
and the dilepton, do not “talk” to each other because of Lorentz time dilation. Therefore,

multiple interactions of the quark in nuclear matter seem to have no further influence on the -

produced dilepton, i.e. no broadening of the transverse momentum is expected. However,
this conclusion is not correct. While it is true that different ingredients of the fluctuation
cannot communicate, not all fluctuations contribute to DY pair production: many (most) of
them survive the interaction with the target and preserve coherence, i.e. produce no dilep-
ton. The harder the fluctuation, i.e. the larger the intrinsic relative transverse momentum -
between the quark and dilepton, the stronger the kick from the target required for loss of
coherence, i.e. for the fluctuation to be produced on mass shell. Since a nucleus provides a
stronger transverse kick than a proton target (because of nuclear broadening of the quark
transverse momentum) it is able to free fluctuations with larger intrinsic momenta. This
is how the dilepton “knows” about the target and is produced off nuclei with an increased
transverse momentum.

This paper is organized as follows. We explain the main ideas of the light-cone approach in
the introduction. The key ingredient of this method, the universal color dipole cross section
for a g pair interacting with a nucleon, is known from phenomenology. In Sect. 2, we explain
how nuclear effects are treated in the color dipole approach. In particular, we describe, how
nuclear gluon shadowing has to be included along with the gg-nucleus cross section. The
results for gluon shadowing are presented in Sect. 3. The results of our calculations for the
DY cross section in pA collisions, and predictions for RHIC and LHC, can be found in Sect. 4.
Nuclear modification of the DY pair transverse momentum is calculated for the energies of
RHIC and LHC in Sect. 5. We found that the so called Cronin effect, nuclear enhancement
of the DY cross section at medium-large g7, is nearly compensated at RHIC energies but is
expected to have a large magnitude at LHC. We conclude that nuclear broadening of the DY
transverse momentum squared diverges logarithmically for transversely polarized photons if
nuclear shadowing occurs. Differences in nuclear effects for radiation of longitudinally and
transversely polarized photons lead to specific nuclear modification of the DY polarization.
Corresponding predictions are presented in Sect. 6. In particular, we found substantial
deviation from the so called Lam-Tung relation {17]. Indeed, this relation is not supported
by data, which is difficult to explain within the standard parton approach. In Sect. 7-we
address the more difficult problem of nuclear effects in heavy ion collisions. We follow
conventional wisdom and simplify the problem bu employing QCD factorization. Nuclear



shadowing for both sea and valence quarks is calculated within the LC dipole approach. In
contrast to usual expectations, shadowing for valence quarks turns out to be larger than for
the sea. We summarize the results and observations of this paper in Sect. 8 and present an
outlook for further development and application of the LC dipole approach.

2 The gg-nucleus cross section

In order to calculate the DY cross section in pA scattering one has to replace aé\g in Eq. (1)
by the color dipole cross section on a nucleus, a,;}(p, z), which is easy to calculate within the
color dipole approach.

In the limit of long coherence time, the projectile quark may be decomposed into a series
of Fock-states with frozen transverse separations. Since partonic configurations with fixed
transverse separations in impact parameter space are interaction eigenstates [13], a,;}(p, x)
may be calculated using Glauber theory [18], i.e. via simple eikonalization of the gg-nucleon”
cross section,

- 1 4
To(pyx) =2 /d2b [1 - (1 - ézo(%(p, z) TA(b)) ] : (5)
where b is the impact parameter, A is the nuclear mass number and
Ta0) = [ depats,?) (6

is the nuclear thickness, i.e. the integral over the nuclear density. We mark oz in Eq. (5) with
a tilde, because it still misses important contributions. We eventually motivate an improved
eikonal formula Eq. (13) which incorporates the effects of higher Fock components.

The single scattering term can be obtained by expanding (5) to first order in a,%(p, x).
The dipole interacts with the target by exchange of a gluonic colorless system, the so called
Pomeron. The unitarity cut of such an amplitude reveals multiple gluon radiation which is
related to higher Fock states within the LC approach in the target rest frame. Thus, for
single scattering, cré\,; takes all Fock states of the projectile parton into account, not only
|gg). The energy dependence of the dipole cross section is generated by the phase space of
gluons from higher Fock states |qgG), |¢gGQG), . ... Indeed, in the Born approximation, i.e.
two gluon exchange, a,% would be independent of z.

Calculation of cr(% from first principles is still a challenge. We rely on phenomenology and
employ the parametrization of Golec-Biernat and Wiisthoff [14) motivated by the saturation

model, ) 22
oa(px) = 0o [1 — exp (—1{;—/3#)/\)] , (7

where Qg = 1 GeV and the three fitted parameters are oy = 23.03 mb, z, = 0.0003,
and )\ = 0.288. This dipole cross section vanishes o p? at small distances, as implied by
color transparency and levels off exponentially at large separations, which reminds one of



Figure 2: The eikonal formula (5) takes only multiple rescatterings of the
lq@)-Fock component into account. This figure illustrates the amplitude
for double scattering (left). When the amplitude is squared (middle), the
gluon rungs combine to gluon ladders (Pomerons), which are enclosed
into each other. In Regge theory, this contribution to the cross section is
expressed in terms of the Pomeron-Pomeron-Reggeon vertex (right).

eikonalization. The authors of [14] are able to fit all available HERA data with a quite low
x? and can also describe diffractive HERA data.

We now turn to the multiple scattering terms. Describing shadowing for DY is simplified
if we make use of the fact that the dipole cross section entering the formula for dilepton
production Eq. (1) is the same that is needed to calculate the DIS cross section. We may
thus illustrate the physics of Eq. (5) in fig. 2, where the double scattering term for a ¢g-
dipole is depicted. In terms of Regge phenomenology, the double scattering of the gg-pair
corresponds to the Pomeron-Pomeron-Reggeon vertex. Note that (5) does not only account
for the double scattering term, but also for all higher order rescatterings of the ¢g-pair. The
n-fold scattering graph has n gluon ladders, which are enclosed into each other.

Rescatterings of higher Fock states, containing gluons are omitted in (5). At low z,
however, the lifetime of these higher Fock states will become significantly longer than the
mean internucleon distance and they will scatter more than once inside the nucleus, as
illustrated in fig. 3. In this case, which occurs at RHIC and LHC energies, (5) needs to be
modified to include also these rescattering.

In order to include processes like the one illustrated in fig. 3, it is useful to note that
the rescattered gluon can be interpreted as the first rung of a single gluon ladder exchanged
between the gg-pair and the target. In Regge phenomenology, rescattering of gluons leads to
the triple-Pomeron vertex fig. 3(right), which can be regarded as a correction to the single
scattering term. More precisely, it leads to a reduction of the nuclear gluon density, because
the two Pomerons from the target in fig. 3(right) fuse to a single one, before interaction with
the pair. Indeed, multiple scatterings of higher Fock states containing gluons are known as
the effect of gluon shadowing [19] and lead to an additional suppression of the DY cross
section. In the infinite momentum frame of the nucleus gluon clouds of different nucleons
overlap and fuse at small z (20, 5], fig. 3(right), thereby reducing the gluon density at small .
Although the corrections for gluon rescatterings (in the nuclear rest frame) and gluon fusion
(in the nuclear infinite momentum frame) look very different, this is the same phenomenon
seen from different reference frames. Of course, observables are Lorentz invariant, and both
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Figure 3: At high energy, the lifetime of higher Fock states becomes long
enough for multiple scattering. Shown here is the double scattering am-
plitude for the |qgG)-Fock state. In Regge theory, this process is expressed
in terms of the triple-Pomeron vertez (right). The eikonal formula (5) is

improved to include also these contributions, by multiplying o4 with the
gluon shadowing ratio Rg, Eq. (18).

effects lead to a reduction of the DY cross section.
Thus, the Pomeron-Pomeron fusion process in fig. 3(right) can be taken into account by
multiplying o}%(p, z) with the gluon shadowing ratio

GA(x" é2) —

RG(x’éza) = =1- ARG(:B,@2)' (8)

- AGy(z, @)
The single scattering term reads then
0-:14@(3:, p) = 0{;\(17([), IL‘) /dszg(.’E, é2; b)TA(b) +.o,
N 1 2 2
= Aog(p,z) {1- A d“bDARG(z, Q% b0)Ta(b)| + ..., 9)
where we calculate gluon shadowing as function of impact parameter . The first term in
(9) stands for direct exchange of a Pomeron, while the second, negative term represents the

correction due to the Pomeron fusion process depicted in fig. 3. This recipe becomes even
more clear from the relation valid at p — 0 [21],

2
N o AN o A
aq(j(pa x)}p—-)ﬂ - 'é—as("’;rz') P GN (SU, ;2_) . (10)
In (9), the proton gluon density in (10) was replaced by the average nuclear gluon density,
2
N N AR A
Jqq(p,x)\péoé - as(pz) o = Ga (3: ,,z) . (11)

It is clear from (9) that the effective dipole cross section on a bound nucleon appears to be
reduced due to gluon shadowing. We also see from (10) that Rg has to be evaluated at a
scale Q? = \/p?.



What fusion processes are included in (9) depends on the approximation in which gluon
shadowing Rg is evaluated. For our actual calculations (see Sect. 3) nuclear shadowing for
gluons is calculated within the Green function formalism for a |¢gG) fluctuation propagating
through nuclear medium developed in [22]. This means, that the single scattering term in
(9) is corrected not only for the 2IP — IP Pomeron fusion term depicted in fig. 3(right), but
also all the nIP — IP fusion processes are taken into account. Moreover, the Green function
approach properly describes the finite lifetime of the |¢GG)-state. This is important, because
even when the gg-fluctuation lives much longer than the nuclear radius, the lifetime of the
|ggG)-state will be shorter.

For the rescattering terms, we can account for higher Fock states in the same way as in
(9), namely by the replacement [23, 24]

(P, T) = oa(p, T) Re(x, Q%,b) (12)

i.e. the improved formula Eq. (5) for the gg-nucleus section reads,

A
a%(p,x) = 2/d2b [1 - (1 - iaqq( z)Re(z, M/ p?, b)TA(b)) ] : (13)

This expression includes also the contribution of higher Fock states containing more than
one gluon. The higher order multiple interactions of the |¢g§G) Fock state correspond, as
was mentioned, to multi-Pomeron fusion, nIP — IP, while the Reggeon diagrams with
nIlP — mIP (m > 2) are missing. Those diagrams should be incorporated via the Fock
components |g7mG) containing two or more gluons. The modified expression Eq. (13) sums
multiple interactions of the ¢g pair via mIP exchange (summed over m) each of which has
a form of a fan nIP — IP (summed over n). We assume that each gluon in the Fock state
|ggmG) experiences multiple interactions independently of other gluons. This assumption
correspond to the Gribov’s interpretation [25] of the Glauber eikonal shadowing, namely the
unitarity cut of an n-fold scattering term must contain a simultaneous cut of all » Pomerons.
Therefore it corresponds to nonplanar graph describing independent multiple interaction of
n projectile partons (see discussion in [24])

We can now proceed to calculate o +(x, p) according to (13). We briefly summarize our
calculation of gluon shadowing (Rg) [22] in section 3. The results for the nuclear dipole cross
section aqq(p, z) are depicted in fig. 4. Since (13) is a high energy approximation valid when
the lifetime of the gg-pair exceeds the nuclear radius, these results are relevant at RHIC
and LHC energies. At lower energies however, one has to take transitions between different
eigenstates into account [10].

The plot on the Lh.s. of fig. 4 shows the dipole cross section itself. First, we discuss the
qg-proton cross section. The two upper curves show this quantity for two different values
of z typical for RHIC and LHC. After a quadratic rise a levels off and takes an energy
independent saturation value of 23.03 mb. The onset of saturatlon i.e. the flattening of the
dipole cross section as function of p is controlled by the saturation radius,

Ri) = (2) (14
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Figure 4: The figure on the left shows the gg-nucleus cross section (18)
divided by the nuclear mass number A for two different values of x. The
two lower curves (solid and dashed) are calculated for gold (A = 197)
and the two upper curves for a proton. The figure on the right shows
the qg-nucleus cross section divided by A times the dipole cross section
(7). While large separations are strongly suppressed, small size dipoles
are much less affected by the nucleus. Nuclear gluon shadowing is in-
cluded in the calculation, as explained in the text. It vanishes at small qf
separations which correspond to high Q2.

which decreases with energy. The energy dependence of (7) correlates with p. At p < R,
the dipole cross section grows with a hard Pomeron intercept A = 0.288 with energy, while
at large separations, p > R,, (7) becomes independent of energy. For more discussion on
(7) we refer to the original work [14].

We now turn our attention to the ¢g nucleus cross section o/5(p, ), eq. (13), which is
shown by the two lower curves in fig. 4 (left). In addition to the expected suppression due
to nuclear shadowing, one also sees that the saturation value of 0;1‘}7, which is approximately
at its geometrical limit 2 R%, is energy dependent. Moreover, a;;‘q(p — 00, z) is a decreasing
function of energy. This is a consequence of the gluon shadowing in (13). At very small ,
gluon shadowing becomes strong, (see fig. 6) and the gg nucleus cross section lies below its
geometrical limit. The stronger the gluon shadowing, the smaller the saturation value of ag}.
However, Rg — 1 at p — 0 since Q% ~ 1/p* = oo (see fig. 6).

The nuclear suppression of the dipole cross section is plotted on the right of fig. 4. Small
sizes are less affected by the nucleus than large sizes. This illustrates the effect of color
filtering [26], which is the mechanism behind nuclear broadening of transverse momenta (see
section 5). While small gg-pairs, which have large intrinsic transverse momenta according
to the uncertainty principle, propagate through the nucleus almost undisturbed, large pairs
(small transverse momenta) are absorbed, i.e. the coherence of the fluctuation is disturbed
and the #* is freed. Absorption thus leads to an increase of the mean transverse momentum.
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3 Gluon shadowing in nuclei

The nuclear shadowing for gluons needed as input for the gg-nucleus cross section in (13)
is calculated in the LC Green function approach developed in {22, where gluon shadowing
is calculated from shadowing of the |¢gG) Fock-component of a longitudinally polarized
photon. In this section, we briefly review the aprroach of [22] and present the results of our
calculation for gluon shadowing as function of z, @? and the length L of the path in the
nuclear medium.

Longitudinal photons can serve to measure the gluon density because they effectively
couple to color-octet-octet dipoles. This can be understood in the following way: The
light-cone wave function for the transition 7; — ¢g does not allow for large, aligned jet
configurations. Thus, unlike the transverse case, all ¢g dipoles from longitudinal photons
have size 1/Q? and the double scattering term vanishes like o« 1/Q*. The leading twist
contribution for the shadowing of longitudinal photons arises from the |¢§G) Fock state of
the photon.- Here again, the distance between the q and the g is of order 1/Q?, but the gluon-
can propagate relatively far from the gg-pair. In addition, after radiation of the gluon, the
pair is in an octet state. Therefore, the entire |¢gG)-system appears as a GG-dipole, and the
shadowing correction to the longitudinal cross section is just the gluon shadowing we want
to calculate.

A critical issue for determining the magnitude of gluon shadowing is the distance the
gluon can propagate from the gg-pair in impact parameter space, i.e. knowing how large the
GG dipole can become. In [22], this value was able to be extracted from single diffraction data
in hadronic collisions because these data allow one to unambiguously single out diffractive
gluon radiation (the triple-Pomeron contribution in Regge phenomenology). The diffraction
cross section (o< p?) is even more sensitive to the dipole size than the total cross section
(x p?) and is therefore a sensitive probe of the mean transverse separation. It was found
in [22] that the mean dipole size must be of the order of ry = 0.3 fm, considerably smaller
than a light hadron. A rather small gluon cloud of this size surrounding the valence quarks
is the only way known to resolve the long-standing problem of the smallness of the triple-
Pomeron coupling. The smallness of the GG dipole is incorporated into the LC approach by
a nonperturbative interaction between the gluons.

Note that the small value of ry dictated by data for diffraction is consistent with the
results of other approaches. Indeed, the same small size characterizing gluonic fluctuations
was found in the instanton liquid model [27] and in the QCD sum rule analysis of the gluonic
formfactor of the proton [28], and it also follows from lattice calculations [29]. Note that the
value of ry also limits the Q2-range where the approximation ¢GG ~ GG is valid. One has
to ensure that Q2 > 1/r2, otherwise the ¢g pair is not pointlike compared to the size of the
entire Fock state.

Our results for gluon shadowing as a function of the length of the path in the nuclear
medium are shown in fig. 5. The calculations are performed for lead with a uniform nuclear
density of p4 = 0.16 fm™>. Details are presented in Appendix A. The small size of the GG
dipole leads to a rather weak gluon shadowing (except for specific reactions where the g pair
is colorless [24]). For most values of z, gluon shadowing increases as a function of L as one
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Figure 5: Gluon shadowing vs. the length of the nuclear medium L =
2¢/R% — b2, All curves are for Q* = 20 GeV?, but for different values
of x.

would expect. At the largest value of z = 0.01, however, gluon shadowing becomes smaller
as L increases and R approaches 1. Although this behavior seems to be counterintuitive, it
can be easily understood by noting that at z = 0.01 the coherence length of the |ggG)-Fock
state becomes very small and the formfactor of the nucleus supresses shadowing [30]. The
curves shown in fig. 5 are the ones which actually enter our calculation for DY via the gg-
nucleus cross section (13). The values of z entering our calculation are z ~ 10~2 for RHIC
and z ~ 1078 for LHC.

We also calculate gluon shadowing as function of z at fixed @* and as a function of Q?
at fixed z, integrated over the impact parameter b. The results are shown in fig. 6. In the
left plot, one observes that gluon shadowing vanishes for z > 0.01. This happens because
the lifetime of the |ggG)-fluctuation becomes smaller than the mean internucleon distance
of ~ 2 fm as z exceeds 0.01. Indeed, in [30] an average coherence length of slightly less
than 2 fm was found for the |¢gG)-state at x = 0.01 and large Q% > 1/r2. Note that gluon
shadowing sets in at a smaller value of z than quark shadowing because the mass of a |¢GG)-
state is larger than the mass of a |¢g)-state. This delayed onset of gluon shadowing was
already found in [22]. We also point out that gluon shadowing is even weaker than quark
shadowing in the z-range plotted, because the small size of the GG-dipole overcompensates
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copper and gold. The z-dependence is shown for Q? = 20 GeV?, while

the figure on the right is calculated for x = 107*.

the Casimir factor in the GG-proton cross section, ogg = (9/4)c). The plot on the right
of fig. 6 shows the @%-dependence of gluon shadowing and clearly demonstrates that gluon
shadowing is a leading twist effect. Rg only very slowly (logarithmically) approaches unity
as Q% — oo.

4 Nuclear shadowing for DY pair production in pA-
and D A-collisions

Nuclear shadowing for the DY process was first observed in proton-nucleus (pA) collisions by
the E772 experiment at large 25 [1]. The shadowing effect will also be present in the energy
range of RHIC and LHC. Since RHIC will probably first measure the DY cross section from
deuterium-nucleus (DA) rather than pA collisions, we perform calculations for both, pA and
DA collisions.

The dipole formulation provides the following explanation of shadowing in the DY pro-
cess. When the coherence length is long, one of the projectile quarks develops a v*¢-
fluctuation long before it reaches the target. If the transverse momentum transfer from
the target is large enough to resolve the fluctuation, the virtual photon is freed and even-
tually is observed as a lepton pair in the detector. In the case of a nuclear target, the set
of struck nucleons compete to free the virtual photon. If the |y*q)-state has a very small
transverse size, it can propagate through the entire nucleus because none of the bound nu-
cleons can provide a kick strong enough to resolve the |y*q) structure in the incident quark.
These small fluctuations have the same small probability to interact with any nucleon, so
they will not be shadowed. On the other hand, if the fluctuation is large in size, only a
small momentum transfer is necessary to resolve the photon. Thus, the coherence of a large
fluctuation will be destroyed with high probability already in the first collision on the surface
of the nucleus. Nucleons deeper in the nucleus do not add much to the probability of freeing
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Figure 7: Shadowing for the total DY cross section in proton — gold (upper
curves) and deuterium - gold (lower curves) collisions at the energies
of RHIC and LHC as function of Feynman zr and dilepton mass M?,
respectively. The left figure is calculated for M = 4.5 GeV. The figure on
the right for zp = 0.5.

the «v*. Thus, this probability nearly saturates for these extremely large fluctuations, and the
DY cross section will scale like A%3. From these considerations, we can find two necessary
conditions for shadowing [30],

e The v*¢q fluctuation must have a lifetime long enough to allow for at least two scatter-
ings during the coherence time £,.

e The v*q fluctuation must have a large freeing cross section?, i.e. its transverse size must
be sufficiently large.

The first condition is assumed to be fulfilled throughout this paper, where we consider only
the case of infinite t.. The dependence of shadowing on the fluctuation size is encoded in
the gg-nucleus cross section (13).

Note that since the y*¢-fluctuation is formed long before the target, the dilepton is
unaffected by the quark energy loss. Thus, the entire suppression of the DY cross section at
very low x5, say 2o < 0.001, is due to shadowing and we do not need to worry about energy
loss. This is different at the lower fixed target energies [1], where the observed depletion
of the DY cross section originates from a combination of shadowing and energy loss [2, 3].
The complimentary behavior of shadowing and energy loss is discussed in more detail in {3]:
Long ¢, means that only shadowing occurs, while for short ¢., one observes only energy loss.

To obtain the cross section for an incident hadron, the partonic cross section (1) has to
be weighted with the quark (and antiquark) distributions, ¢(z), of the projectile hadron, and

30ne should distinguish between the freeing and the total cross sections of a fluctuation. The latter
is always large for a colored quark and all its fluctuations, while the former is driven by the difference
between scattering amplitudes of different fluctuations (|g) and |gv*) in our case). Since it is only the quark
that interacts in each of these Fock states, the freeing cross section is controlled by the relative transverse
displacement of the quarks within different fluctuations. This is how the dipole cross section comes about.
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one has to include the factors necessary to account for the decay of the virtual photon into
the dilepton. For an incident proton, this cross section becomes

d*o(pA = UX) Qem (T
dMZdzp = 37TM2271+1332/1 sz{ ( ) (a,Mz)} (15)
da(qA—-)fy*X)
dlna ’

where Z; is the charge of a quark of flavor f. We assume that the the same expression (15)
applies for both proton and deuteron projectiles, so that the only difference between these
cases is that the flavor sum ranges over the quarks of the proton and neutron in the case of
an incident deuteron. Nuclear in the deuterium structure function and finite-size effects are
neglected, and isospin symmetry is assumed.

For a calculation that actually can be compared to data, we employ the CTEQSL pa-
rameterization [31] (taken from CERNLIB [32]) for ¢; ;. Note that since the projectile quark
distributions enter at large £ = z;/a > x,, where they are well known. THus, the uncer-
tainty arising from the choice of parton distributions is minimal. However, these parton
distributions are different for the proton and deuterium, so that the pA and DA DY cross
section are not trivially related. Shadowing can now be obtained by evaluating (15) and (1),
with a;;}j(p, z,) taken from (13), and dividing by A times the analogous calculation with the
gg-proton cross section (7). In the case of the deuterium projectile, we divide by 24. The
nuclear density parametrizations are ::iken from [33].

The result as function of zr and di:epton mass M at different energies is shown in fig. 7.
For each energy (RHIC and LHC) we czlculated pAu and D Au collisions and normalized both
to pp collisions. Note that the D Au curve is always below the pAu curve (for a given energy).
This is because of the different flavor structure of deuterium and the fact that d-quarks are
weighted with a factor Z3 = 1/9 in (15), compared to the factor Z2 = 4/9 for u-quarks. For
the RHIC energy of /s = 200 GeV, we calculate only for zp > 0.5 to make sure that the
fluctuation lifetime significantly exceeds the nuclear radius. At the very high LHC energy
of /s = 5.5 TeV, the coherence time is much larger than the nuclear radius for any value
of zr (except at the very endpoints). Thus, the entire zr-range is shadowed. Shadowing is
especially strong at LHC energies at large xr, where z, can become as low as z, &~ 1075, At
such low z,, the effects of gluon shadowing leads to a sizeable additional suppression of the
DY cross section. Without the gluon shadowing contribution in (13), shadowing of the DY
reaction at LHC would be strongly underestimated. The mass dependence of shadowing in
DY is shown in the plot on the right of fig. 7. The weak dependence on M reflects the fact
that shadowing for DY is a leading twist effect, just as for DIS. Indeed, configurations with
a = 11in (1), (15) are the analog of Bjorken’s aligned jet configurations in DIS [9], which
make shadowing persist as M — oco.

We also investigate the A and the impact parameter dependence of shadowing, with the
results shown in fig. 8. The amount of shadowing, i.e. the difference from unity in fig. 8,
is to a good approximation proportional to A'/3. The deuterium curves in fig. 8 do not of
course go to unity at A = 1 or b — oo; the flavor suppression remains in these limiting cases.
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Figure 8: Shadowing for the total DY cross section as a function of AY/3
and impact parameter b. Both figures are calculated for M = 4.5 GeV
and rr = 0.5. In each plot, the lower pair of curves is for deuterium
~ gold scattering (DAu) and the two upper curves are for proton — gold
collisions (pAu).

We point out that it is a special advantage of the dipole approach that it naturally predicts
the impact parameter dependence of nuclear effects. To obtain the b dependence, one simply
eliminates the b integral in (13) and divides by the nuclear thickness T'(b) instead of A.

5 Nuclear modification of the DY transverse momen-
tum distribution in pA- and D A-collisions

The differential DY cross section as a function of the transverse momentum ¢z can be
calculated in the dipole formulation as well. At the energies relevant for RHIC and LHC,
the transverse momentum distribution of DY pairs from p(D) + A collisions can be written
in frozen approximation [10, 11],

dio(pA = UX)  Qem T Ldo ) 1\ do(g4 — v*X)
= — — S 72 = (=
dM2dzpdiqr ~ 3TM2zy, + 3y /zl a? ; s {qf ( a) +4 ( a)} dlnadigr '
| (16)
in analogy to Eq. (15). The differential cross section for a heavy photon radiation in a
quark-nucleus collision was derived in [10],
do(gA — v X)
dln ad?qy

1 . — — - * — -
(2m)? /d2p1d2p2 exp[qu (1 - p2)]‘I"y’“q(a’ Pl)\pv*q(aapz)

X

1 -t -t
> [oa(en, 22) + ohaps, 22) - o0l - 72l )] (17)

Integrating this expression over gr we arrive at the cross section Eq. (1). Three of the four
integrations in (17) can be performed analytically for an arbitrary form of the dipole cross
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of transverse and longitudinal cross section (T + L) and the lower two
curves (L) separately show the longitudinal cross section.

section 0% [34]. The details of calculations are moved to Appendix B. Since the remaining
integration still has to be performed over an oscillating function, the gr-range in which
numerical calculations are feasible is limited. We calculate up to gr = 10 GeV, which covers
the experimentally interesting region.

As in the preceding section, we perform calculations for pA and for DA scattering. Our
result for the differential DY cross section for transverse and longitudinal pairs are shown
in fig. 9. We show only curves for pA in this figure, because the difference between pA and
DA is hardly visible on the logarithmic scale. As already observed in [11], the differential
cross section does not diverge at zero transverse momentum, because of the flattening of
the dipole cross section at large separations. On the partonic level, we reproduce the same
asymptotic behavior that is expected in the standard parton model,

dor(qp — v*X) o L
dz‘]T qr

for gr — o0 (18)

>
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and

1 ‘
x el for gr — oc. (19)

Embedding the partonic cross section (17) into the hadronic environment as in (16) will lead
to a somewhat steeper decay at large gr, because z; increases with gr and so the structure
function F5 of the projectile will decrease. However, even at gr = 10 GeV, the asymptotic
limit is not yet fully reached. The gr dependence is still slightly less steep than in (18).

To see the effect of nuclear shadowing and antishadowing we divide the nuclear differential
cross section by A times that of the nucleon (24 for DA scattering). Then, nuclear effects
manifest themselves as a deviation from unity. The results of calculations (see Appendix B)
for gold at the energies of RHIC and LHC are presented in fig. 10 for the unpolarized (top)
and longitudinally polarized (bottom) DY cross section ratios. Also, the difference between
pA (left) and DA (right) now becomes clearly visible. As already explained in Sect. 4, this
difference is due to the larger abundance of d-quarks in deuterium. Note that we neglected
nuclear effects in deuterium and assumed isospin symmetry for the DA curves. '

0.1 1 10 1 10 Figure 10: Nuclear ef-
DT e oY 12 fects on the DY trans-
1 i verse momentum distribu-
os B I {0s tion. Curves show the DY
06 3 P ;N cross sections for pAu (left)
" p— A ] and deuterium — gold (right)
© 04 oo 3 ; collisions divided by A(=
s 02 £y 702 197) (or 2A for DAu colli-
2 e ] 2 ] ] 1
E - e : b i sions, respectwgly) times the
6 b L 1.6 DY cross section from pp
'," r, scattering. Solid curves are
12 \/ '.' T g 12 ggc(z)dz’c(t}iog)s for dRI;IC;l (ff:
0.8 | i x ! 1os eV) and dashed for
S VA = e LHC (/s = 5.5 TeV) Cal-
04 B -0 04 culations are for the same
PNl ST RETI: SPRTIY PRTI: IS kinematics as fig. 9.
0.1 1 10 1 10
qT/ GeV

For low transverse momenta, we expect DY dilepton production to be shadowed. Note
that shadowing for longitudinal g pairs is smaller than for transverse pairs because the
longitudinal cross section is dominated by small distances in the dipole cross section. How-
ever, gluons shadowing which onset we observe at RHIC and which becomes the dominant
effect at RHIC is about the same. Indeed, we predict rather different shadowing effects for
longitudinal and transverse dileptons at RHIC, but about the same at LHC.
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It is interesting that the effect of antishadowing, the so-called Cronin effect predicted
in [10], disappears at the energy of RHIC after inclusion of gluon shadowing, which was
disregarded in [10]. This reminds one of the missing Cronin enhancement in charged particle
multiplicities that was measured at RHIC [35]. However, the RHIC data cannot be explained
by gluon shadowing, because the z of the data is too large. Some antishadowing is still
possible at large gr ~ 10 GeV at the energy of LHC as a result of the substantial rise of the
dipole cross section with energy and the corresponding relative enhancement of the multiple
interactions responsible for the Cronin effect. This expectation is confirmed by fig. 11, which
shows the results of calculations without (dashed curves) and with (solid) gluon shadowing.

0.1 1 10 1 10 Figure 11: The influence of
- gluon shadowing on the DY
cross section. Dashed curves
are calculated without gluon
shadowing, i.e. Rg = 1 in
(18), while solid curves in-
© clude gluon shadowing. The
8 I influence on the longitudinal
2 ====\=j=i - ===\=/===% - 2 DY cross section is shown
a 1.8 3 T+L, Vs=5.5 TeV .._ L, Vs=5.5 TeV ; 1.8 separately in the two left
1'2 3 i ,," X :'2 plots (L). The two plots on
12 B E H -_! s the right show the DY ra-
N o 1.3 tio for the sum of the trans-
0.8 K 308 verse and longitudinal cross
06 F  oeee” 3 4 06 sections (T + L). Calcula-
0.4 P e d .3 04 tions are for the same kine-
0.1 1 10 1 10 matics as fig. 9.

qr/ GeV

The DY process with the production of a longitudinally polarized photon manifests
stronger effects of antishadowing (fig. 10 bottom and fig. 11 right), as was earlier observed
in [10]. However, this enhancement of the longitudinal cross section will hardly be visible
in experiments because the transverse cross section is so much larger than the longitudinal

one. All nuclear effects are expected to vanish at very large gr.
One can also study the moments of the transverse momentum distribution. A frequently

measured characteristic of nuclear effects is the broadening of the mean value of the DY
transverse momentum squared, which is the difference between the values of mean transverse
momentum squared measured in pA and pp collisions,

8{ar) = (g2 a — (@F)w (20)
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where . "
7 d*qr ¢f dofydar

RE dqrdoby /dgr

(@) avy = (21)
da”D'?, /dgr is the proton-nucleus DY cross section given by Eq. 16.

It is easy to understand from fig. 10, that a nuclear target leads to a larger mean transverse
momentum of DY dileptons than a proton target: Low ¢r pairs, corresponding to large
arguments of the dipole cross section are shadowed, while high transverse momentum pairs
remain almost unaffected by the nucleus (color filtering). However, the actual numerical
value of broadening, i.e. the increase of the square mean transverse momentum, depends on
the maximum ¢r included in the analysis. This is not an artifact of our approach, this is
also the case in experiment.

According to (18) the numerator in (21) diverges at large gr for the transverse cross
section. Even after averaging over the projectile parton distribution, the integral is very
slowly converging, and one has to introduce an upper cut-off ¢7*** since there is a maximal-
transverse momentum accessible in experiment. On the other hand, the large gr-tail of the
differential cross section should be the same for nuclear and nucleon targets since no nuclear
effects are expected at large gr. For this reason one may think that the divergence cancels in
the difference in Eq. (20) and renders the result cut-off independent. This might be true if no
nuclear effects occured in the integrated DY cross section, i.e. if o%y = Ao’y. However this
is never the case. At long coherence time, [, > R4, shadowing diminishes the DY nuclear
cross section, i.e. the denominator in the first term in Eq. (20). As a result the high-gr tail
of the nuclear gp distribution is renormalized and undercompensated by the second term in
Eq. (20). This is why there is sensitivity to the upper cut-off ¢f*** in our results, and it is
even more pronounced at higher energies where shadowing increases. On the other hand, at
short I, — 0, where shadowing vanishes, energy loss has a similar effect of suppressing the
DY cross section on nuclei [36, 2, 3].

Note that in at least some experiments (37, 38], the transverse momentum broadening is
extracted from the data by fitting the points with the functional form [39]

A(N A(N
doh™ oW

d2QT - q2 ny
P @y

where typically n = 6 for both a proton and a nuclear target. This means that the QCD
tail of the gr-distribution has almost no influence on the fit, which would obviously not
apply in the long coherence length limit we are considering in this paper. However, nuclear
broadening resulting from initial-state interactions, which dominate in the short-coherence
time limit, has a gaussian tail [15], for which eq. (22) is more suited. With the ansatz (22),
the mean transverse momentum squared is given by (¢2) = ¢?/(n — 2), for n > 2, and
thus broadening becomes independent of the absolute normalization a’O’A(N) of the DY cross
section.

In fig. 12 we compare A-dependences of the broadening §{¢2) calculated with different
cut-offs, ¢7** = 5 (bottom curves) and 10 GeV (upper curves). The main observations are,

(22)
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Figure 12: Nuclear broadening for DY dileptons from pAu at RHIC and
LHC. Broadening depends on the transverse momentum cutoff ¢7*®. In
each plot, the lower pair of curves is calculated for ¢7*® = 5 GeV, while
the upper pair is for ¢F** = 10 GeV. The solid curves include gluon shad-
owing, the dashed ones do not. Calculations are for the same kinematics

as fig. 9.

that broadening is roughly proportional to the length of the nuclear medium. This is true for
any value of ¢5*®. Furthermore, §{g2) can become quite large for heavy nuclei, around 1 GeV
at RHIC and around 3 GeV at LHC. While the influence of gluon shadowing on broadening
is rather week, the ¢?%*-dependence is quite strong. This is studied in more detail in fig. 13.
Increasing the transverse momentum cutoff from 5 GeV to 10 GeV at RHIC energy, leads
to an increase of nuclear broadening of slightly more than 50%. At LHC energy however,
where one still has nuclear effecs in the transverse momentum distribution at rather large
values of ¢r, broadening increases by a factor of 3. Therefore, the DY process turns out to
be a less than ideal tool to measure the broadening of the transverse momentum distribution
for a quark propagating through nuclear matter.

Finally, we calculate the energy dependence of nuclear broadening, shown in the plot
on the right in fig. 13. Again, calculations are performed for two different values of the
transverse momentum cutoff. Note that the shape of the curve depends strongly on ¢7**.
For a transverse momentum cutoff of 5 GeV, there is almost no energy dependence of §{g2)
above RHIC energy. The situation looks different if the transverse momentum cutoff is
10 GeV. In this case, broadening does increase as function of energy. It will therefore be
difficult to draw conclusions from possible future data on the energy dependence of §{¢2),
since presumably one will only see the cutoff dependence.

Valuable insight into the relation between shadowing and broadening is gained, if one
performs the integration in the numerator of (21) analytically for ¢f*** — co. Without the
projectile parton distribution, the result reads

A CA(N) (IEQ)

(@) am = 0" + 7z, —
oM (a)

2
& |UT(p, )| (28)
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Figure 13: The cutoff (left) and energy (right) dependence of transverse
momentum broadening for pAu scattering. The calculations includes
gluon shadowing. and are for the same kinematics as fig. 9.

where the wave function squared has the form Egs. (B.2) or (B.3); n* = (1 — o) M? + o®m};

UDY fdz‘JT ‘7Dy qr, @); and

A(N)
CA(N) (xz) — aaqq a (2p’ .’132) . (24)
p p—0

Note that without gluon shadowing, all the (%1ﬁ;erence between a nucleus and a nucleon occurs
qA(N

in the denominator of the second term, o7’ (o). Including gluon shadowing, one has
CA(z2) = CN (22) Re(22). (25)

At the same time the problem of divergence at large ¢r is moved to the integral of the LC
wave function squared in the second term, which has logarithmic singularity at p — 0. Thus,
the broadening Eq. (20) takes the form,

N Zo 0 2
3(08) = (ARoy (o) ~ ARole) ‘g D [ dip ¥ (29
Ipyl&

where ARpy and ARg are nuclear suppressions for DY and for gluons, i.e. the difference
from unity, cf. Eq. 8.

We arrive at the interesting conclusion that if there is no shadowing, the broadening of
transverse momentum vanishes as well. This is a manifestation of a close relation between
broadening and shadowing in the regime of I, > R4. Indeed, broadening is interpreted in
the LC dipole approach as color filtering. Namely, the mean size of a ¢g dipole propagated
through nuclear matter decreases due to absorption of large size configurations, therefore
the intrinsic transverse momentum rises. Shadowing occurs due to the same phenomenon.
Once one says that shadowing is negligibly small, it means that the dipole is too small to
undergo multiple interactions. However, in this case no color filtering occurs either. This
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rather intuitive result looks very nontrivial in the framework of parton model, where one can
get broadening even without shadowing [40].

Note that gluon shadowing seems to reduce the amount of broadening in Eq. (26). This
could be expected, since gluon shadowing reduces the nuclear thickness, cf. Eq. (13), and a
more dilute medium leads to less broadening. However, shadowing for DY, ARpy, increases
with gluon shadowing. Numerically we find, that the influence of gluon shadowing cancels
to a large amount and broadening is almost independent of Rg, see Fig. 12.

In Eq. (21) we avoided the (logarithmic) divergence in (g3 ) related to the singular be-
havior of K; (z) at small z for transverse photons by introducing above an upper cutoff g***
on the integrals over gr. These numerical results constitue quantitative predictions of the
LC target rest frame formulation that may be compared to experiment noting that ¢7**
is a physical parameter related to the acceptance of the spectrometer in the measurement.
Motivated by the desire to understand these same numerical results analytically, we next
examine the theory employing certain simplifications and approximations.

Our main approximation is to make the replacement of the fluctuation distribution by a"

gaussian,
2

[W(e, PP = S5 (1 + (1= a)rPn?e ™, (27)

where k2 = 28n?%, with n? and 3 chosen to give an acceptable match to the actual fluctuation
distribution, which we simplify to be

(e )l = 553 ((1 + (1 = )P KE (o), (28)

noting that m, is small and the longitudinal contribution is about a 10% correction to
the momentum distribution. Because the distribution of fluctuations is integrable with the
cutoff, the average size of the fluctuation is meaningful, and ith the gaussian wave function,
the mean-square transverse spread of the fluctionation is (p?) = 1/k2.

With such approximations, the integral in Eq. (17) can be evaluated analytlcally "The
result of carrying out the integrals over py, ps, and gr gives

) Sgd .. | 2C(a) o® T4(b) 2 [C(a) 02 Ty (b))
/ Parar g lnaDc;qT ”/ i { 2 TERtC@ e TA(b)]z}

. Cla)a?Ta ) 02 T4 (b))
~ w/db{z ()kgT(bH Ll )2k3T O, } (29)

where we have omitted the prefactors in Eq. (27), and the expansion is useful for examining
the limit of weak shadowing. Likewise,

/d2q d(d3aDY 27r/‘d2b Cl(a) a? T4 (b)

Ina)d?qr k2 2k2+ C(a) a2 T4(b)
N 7r/d2b { C(a) Z:TA(b) B [C’(a);t]";(fil",q(b)]2 N } (30)
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In these expressions we have introduced an effective C' = C(a), defined independent of 3 so
that the Drell-Yan cross section for the GW color dipole cross section is reproduced in the
p? approximation to it on a nucleon,

[ Ki(np)o(ap)d®p
n? | e Pl 2d2p

Cla) = (31)

We could optimally match approximate theory to the exact one by choosing n? and 8
numerically for a given ¢J***, but since our interest is insight rather than numerical precision
at this point our conditons are simply the following: (1) Preserve the integral [ p2K?(np)d®p,

o0 o0
k2,2
/ P K} (np)d®p = n? / ple™Rr d?p, (32)
0 0
determining n® = 1642?/3. (2) Adjust § to preserve (p®) using the asymptotic form for
Ki(z). This gives § = 1. We determine the effective momentum cutoff corresponding
to this gaussian by comparing the exact numerical value for {¢Z)y for the nucleon to the
approximate value. The latter is obtained from the small-A limit of Eqgs. (29) and (30),

(gr)v = 2(’(1+ (1 - a)”))/{e*(1 + (1 — &)*) /K2), (33)

where the brackets indicate the convolution (16) with the quark distribution function. We
find that for ¢f'** = 10GeV, (¢%)n agrees with the RHIC values to about 10% and LHC
values to about 30%.

For a nucleus, the integrals over impact parameter in in Eq. (29) and Eq. (30) may be
carried out analytically for a sharp-surface density model in which the density is constant
at po out to radius R, /5, and zero beyond. For this model, the thickness function TA )(b) is

T b) = 2p0(RE; — )2, b< Ry (34)

Except for details in the surface, the shape of TS (b) looks very similar to that of a realistic
Woods-Saxon density of half-radius R/, = 1. 1AY/3 fm, diffuseness a = 0.545 fm, and central

34 1
density py = IS, Tretat] T, To quantify the dlfference, we calculated numerically the

moments
/ 26T (b). (35)

for for 1 €< n < 5 in the two cases. For nuclei 4 > 16S we found less than a 10% discrepency.
For the sharp-surface density model 2p3d?b = 7rTA dT . Then, from Eq.(29), we find

gN 47I'2R2 2 1
a2 GDY ~ 12 |q 23,292 o Y _

and from Eq. (30)

472 R? 2
2 UDY 1/2 )
/d ar i) o ~ [1n (1+y)+ oo y} . (37)



where y = C(a)a?poRy/2/k2. To obtain (¢3) for the nucleus, it is necessary to perform a
convolution of these expressions with the quark distribution function of the nucleon projectile
as in Eq. (16).

It is interesting to examine the expansion of Eq.(36) and Eq. (37) in powers of y. Recalling
that k? = 1/(p?), and further noting that L = 2R, is the distance through the center of the
nucleus, this is essentially an expansion in y = L/2\ where A = 1/(044)po is the mean-free
path of the fluctuation. For most values of «, the number of interaction mean-free paths in
crossing the nucleus is tiny due to the large value of M? in n* = (1—a)M?+a*m2. However,
for o &~ 1, the mean transverse separation of the fluctuation may become relatively large (we
find (p?)'/2 = 0.7 fm for m, = 0.2 GeV'). In fact, for a large nucleus (A=208), we see that
for RHIC energies C(a =~ 1) = 2.5 and y ~ 1.5. Clearly, these larger fluctuations have a
relatively small mean-free path A and are subject to appreciable color filtering in traversing
the nucleus. For LHC, C(a ~ 1) = 5.7 and y ~ 3.4. At he same time, the amount by which
(¢%) differs its value for a nucleon, Eq. (33), grows and hence nuclear broadening also grows.
In this fashion, the physics of nuclear broadening is again seen to be directly related to color-
filtering for a ~ 1. Since the expansion of Egs. (36) and (37) converges slowly in the region
where the largest contributions to the nuclear broadening occur, it is necessary to evaluate
the integrals over b and « without making an expansion to calculate §{¢2) with sufficient
accuracy.

With these approximations (we have also omitted gluon shadowing, which has been
shown to have a weak effect on 6{(¢g%)), we find for heavy nuclei I, > Ry, 6{¢%) o (T3),
i.e. 0(qg%) is very nearly linear with A3, just as we found in our more exact numerical
studies. The constants of proportionality are about 2.2C(z;) at RHIC and 1.1C(z,) at
LHC, which overestimate the slope of the exact results by about 20% and 44%, respectively.
Although linearity in A'/% would follows in the weak scattering limit, we again remark that
our analytical calculations indicate substantial effects from higher-order multiple scattering.

In the opposite limit of short [, — 0, broadening is known to rise linearly with the length
of the path of the quark in nuclear matter before the DY reaction occurs [41, 15],

8{ar) = C(=2) (Ta) , (38)

where (T4) = [ d?6T2(b)/A is the mean nuclear thickness. It is interesting to compare the
nuclear dependerces of broadening in the two limiting regimes I, >> R4, Eq. (26), and [, — 0,
Eq. (38). Expan:iing the nuclear cross section Eq. (5) in a‘% T4(b), we can then perform the
integration for longitudinal DY photons (for transverse photons it diverges). Then we arrive
at the same expression Eq. (38), except it acquires an extra factor

K= ([0:{7]2)5, (39)
4 (o)
where )
()= / Po(.) [Pyl (40)
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Applying the p? approximation Eq. (10) for the dipole cross we get K = 6/5. Thus, the
broadening in the asymptotic regime [, > R4 matches rather well the low energy regime.

Thus, the dependence of the broadening §(g2) on the cut-off is an unpleasant property
that brings uncertainty to the comparison of theory with data. As we mentioned, it is related
to the large qr behavior Eq. (18) of the DY cross section, leading to a logarithmic divergence
in the integral over g weighted with g%,

q$az

(oh g2y = / d*qr g2 oy (g7, @) (41)
0

which is the numerator in (21). Since this integral has exactly the same divergence at large
g7 for nuclear and nucleon targets, it must cancel in the difference,

8{opy ¢2) = (o a%) — A(ohy a3) (42) -

and the result should be independent of the upper cut-off ¢**® when it is sufficiently large.
One can also normalize this difference dividing both terms by A (opy). Unfortunately, the
result is not an exact measure of the broadening of the transverse momentum of a quark
propagating through a nucleus. However, these quantities are independent of the experi-
mental acceptance (g7**), and this fact makes it a better observable than the broadening,
Eq. (20), to compare with theory.

6 Polarization of DY pairs

In the preceding section, we separately calculated the DY cross section for transverse and
longitudinal photons. In experiment, different polarizations can be distinguished by inves-
tigating the angular distribution of DY pairs. The most general form of the DY angular
distribution reads [17],

dio
drpdM?d cos 0do

oc 1+ Acos® 6 + psin(26) cos(¢) -+ g sin?(0) cos(2¢), (43)

where 6 is the angle between the muon and the z-axis in the rest frame of the virtual photon
and ¢ is the azimuthal angle. Of course, A and ¢ depend on the choice of z-axis in the
dilepton center of mass frame. Since the dipole approach is formulated in the target rest
frame, it is convenient to put the z-axis in the direction of the radiated photon [9]. The target
rest frame and the dilepton center of mass frame are then related by a boost in z-direction,
so that the transverse polarizations are the same in the target rest frame and in the photon
rest frame. Note that in the dilepton center of mass frame, the z-axis is antiparallel to the
target momentum. This frame is called the u-channel frame and the curves we present are
valid in this frame.

The ¢-dependence of the cross section is difficult to measure. At RHIC, only the value
of A can be measured [37]. Since A = +1 for transverse and A = —1 for longitudinal, one .
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Figure 14: The parameter A (44) in DAu collisions at RHIC and LHC
(left). The figure on the right illustrates nuclear effects on X, by showing
the ratio of \ for DAu scattering and for pp scattering. Calculations are
for the same kinematics as in fig. 9.

obtains after integration over the azimuthal angle,

=22 9L (44)
or + oy,

Our results for A at RHIC and LHC energies are shown in fig. 14. All curves are calculated
including gluon shadowing. Note that at low gr, A shows a clear deviation from unity.
This deviation increases with energy, because the longitudinal cross section is more strongly
dominated by small distances than the transverse. Since the dipole cross section grows faster
with energy at small separations, the rel